Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463956

RESUMO

SARS-CoV-2 variants of concern harbor mutations in the Spike (S) glycoprotein that confer more efficient transmission and dampen the efficacy of COVID-19 vaccines and antibody therapies. S mediates virus entry and is the primary target for antibody responses. Structural studies of soluble S variants have revealed an increased propensity towards conformations accessible to receptor human Angiotensin-Converting Enzyme 2 (hACE2). However, real-time observations of conformational dynamics that govern the structural equilibriums of the S variants have been lacking. Here, we report single-molecule Forster Resonance Energy Transfer (smFRET) studies of S variants containing critical mutations, including D614G and E484K, in the context of virus particles. Investigated variants predominantly occupied more open hACE2-accessible conformations, agreeing with previous structures of soluble trimers. Additionally, these S variants exhibited decelerated transitions in hACE2-accessible/bound states. Our finding of increased S kinetic stability in the open conformation provides a new perspective on SARS-CoV-2 adaptation to the human population.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-454546

RESUMO

Emerging variants of concern for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit more efficiently and partially evade protective immune responses, thus necessitating continued refinement of antibody therapies and immunogen design. Here we elucidate the structural basis and mode of action for two potent SARS-CoV-2 Spike (S) neutralizing monoclonal antibodies CV3-1 and CV3-25 that remained effective against emerging variants of concern in vitro and in vivo. CV3-1 bound to the (485-GFN-487) loop within the receptor-binding domain (RBD) in the "RBD-up" position and triggered potent shedding of the S1 subunit. In contrast, CV3-25 inhibited membrane fusion by binding to an epitope in the stem helix region of the S2 subunit that is highly conserved among {beta}-coronaviruses. Thus, vaccine immunogen designs that incorporate the conserved regions in RBD and stem helix region are candidates to elicit pan-coronavirus protective immune responses.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436337

RESUMO

Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We could visualize virus spread sequentially from the nasal cavity to the lungs and thereafter systemically to various organs including the brain, which culminated in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct Fab-mediated neutralization, Fc effector interactions of NAbs with monocytes, neutrophils and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435972

RESUMO

The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials includes two doses administered three weeks apart. While the decision by some public health authorities to space the doses because of limiting supply has raised concerns about vaccine efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its administration. We analyzed humoral and T cells responses three weeks after a single dose of this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing activity were elicited in SARS-CoV-2 naive individuals. However, we detected strong anti-receptor binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular responses dominated by the CD4+ T cell component. A single dose of this mRNA vaccine to individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses measured, with strong correlations between T helper and antibody immunity. Neutralizing responses were increased in both potency and breadth, with distinctive capacity to neutralize emerging variant strains. Our results highlight the importance of vaccinating uninfected and previously-infected individuals and shed new light into the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine scarcity against SARS-CoV-2.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-286948

RESUMO

SARS-CoV-2 spike (S) mediates entry into cells and is critical for vaccine development against COVID-19. Structural studies have revealed distinct conformations of S, but real-time information that connects these structures, is lacking. Here we apply single-molecule Forster Resonance Energy Transfer (smFRET) imaging to observe conformational dynamics of S on virus particles. Virus-associated S dynamically samples at least four distinct conformational states. In response to hACE2, S opens sequentially into the hACE2-bound S conformation through at least one on-path intermediate. Conformational preferences of convalescent plasma and antibodies suggest mechanisms of neutralization involving either competition with hACE2 for binding to RBD or allosteric interference with conformational changes required for entry. Our findings inform on mechanisms of S recognition and conformations for immunogen design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...